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Definitions

Statistics (1786): A science of collecting and
analysing numerical data in large quantities,
especially for the purpose of inferring
proportions in a whole from those in a
representative sample.

Computer Science (1962): A study of
principles and use of computers

Data Science (2001): A multi-disciplinary field
that uses scientific methods, processes,
algorithms and systems to extract knowledge
and insights from data in various forms, both
structured and unstructured.




Data science methods & algorithms

Machine learning:
- A data analysis method that automates analytical model
building
- Systems learn from data, identify patterns and make decisions
with minimal human intervention
Two broad categories:
* Supervised Algorithms:
- Regression ( e.g. Linear Regression)
- Classification (e.g. Decision trees )
* Unsupervised Algorithms
- K Means Clustering
* Approximately 40 data science techniques



Availability of HIV clinical data

* Infectious Diseases Institute (IDI) clinic Mulago provides care and
treatment to over 300,000 ever registered and 8000 active PLWHIV

e 10 year cohort of PLWHIV with structured laboratory and clinical
monitoring

* IDI Implementing partner for CDC in four regions (Kampala, Central,
Bunyoro and West Nile regions)

* Access to data from approximately nation’s 300,000 PLWHIV

 Partnerships that foster access to data from MOH PrEP and EID/PMTCT
dashboards 4



1. Can we merge HIV clinical data and data science techniques?

2. How good is your model?
- Evaluated using performance measures and “confusion matrix”

https://towardsdatascience.com/creating-intelligence-with-data-science-2fb9f697fc79 5



Project 1: Predicting mortality after ART initiation

* Antiretroviral therapy (ART) has significantly improved survival of HIV
patients and changed HIV infection to a manageable chronic disease?

* Mortality during early ART roll-out ranged between 15 —-35% and has
since decreased with changing ART initiation guidelines?

* Aimed to apply machine-learning (ML) techniques to predict all-cause
mortality amongst patients previously in a 5 year randomized ART trial

e Data from 377 patients (153 men and 224 women)

« Data randomly split into nine-tenths to train and the rest used to
test

 Used Random Forest (RF) and Support Vector Machine (SVM)
techniques

1. Quinn et al, 2008, Kambugu et al CID 2009 6



Receiver Operating Characteristic curve (ROC)
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Accuracy (95% Cl) = 0.93 (0.92, 0.95)
Area under curve (AUC) = 0.97
Sensitivity = 1.00

Specificity = 0.93

True positive rate

08

04

0.0

ROC for Random Forests (RF)
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Accuracy (95% Cl) = 0.98 (0.97, 0.99)
Area under curve (AUC) = 0.99
Sensitivity =1.00, Precision = 100%
Specificity = 0.98, Accuracy =98%
F1 score = 58% Recall =41%



Project 2: Machine learning to predict retention in PrEP programs
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Eakle R et al (2017), HIV pre-exposure prophylaxis and early antiretroviral treatment among
female sex workers in South Africa 8



Methods

* De-identified data were extracted from an electronic web-based PrEP
tracker and dashboard from at 5 implementing sites in the central
(urban) and mid-western (rural) regions of the country.

* Retention was defined as having at least one follow-up visit following
PrEP initiation.

* We implemented the XGBoost algorithm in Python to predict
retention.

» 7800 patients initiated on PrEP (August 2018)
* Data were split into training (70%) and test datasets (30%)
* Evaluated model performance using ROC, accuracy, precision, F score



Preliminary results and next steps
* Over all retention observed among 42% of clients initiated on PrEP

* The model precision was 0.975, F score was 0.958 and a C statistics
from (ROC) curve of 0.982 (95% Cl: 0.965—0.995)

* FSW and persons 18-24 likely to drop out of PrEP programs

* Developing a risk score for PrEP retention/drop out
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Other ongoing projects:

Project 3: Development of Risk score for predicting disengagement
from PMTCT programs

Project 4: Predicting which patients are likely to be successfully
found during community tracing of persons who disengage from
ART programs
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Conclusions

* Data science can be used to predict key outcomes such as mortality,

retention in HIV clinical research

* Wide set of methods that can be combined with large clinical

databases to design solutions to common problems

 Data science techniques/models can identify subset of populations

for targets interventions

* Future results will guide development strategies for national HIV care

programs
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