
2019 Health Innovations Conference

Tuesday, 19 March 2019

Daniel Veltri, Ph.D.

Motivation
 Reports of antibiotic resistance have increased despite a

slowdown in new antibiotics coming to market in recent
decades,

 The U.S. Center for Disease Control reports over 2 million
infections and 23,000 deaths each year due to antibiotic-
resistant bacteria and fungi in the U.S. [1],

 The WHO has put out numerous reports warning of the
risks of resistant bacteria to hospitals around the world.

2

Methicillin-resistant Staphylococcus aureus (left)
Carbapenem-resistant Enterobacteriaceae (right)

[1] CDC: https://www.cdc.gov/drugresistance/about.html

Antimicrobial Peptides (AMPs)

3

 One promising area for new antibiotic research has been natural AMPs- short peptides with innate
antibacterial activity found across all phyla,

 To date, efforts to design and/or modify AMPs have had limited success in delivering new drugs to market.

Beta Defensin 1
Homo sapiens

PDB: 1IJV

Magainin 2
Xenopus laevis

PDB: 2MAG

Cathelicidin LL-37
Homo sapiens

PDB: 2K6O

Aurelin
Aurelia aurita

PDB: 2LG4

AMPs are Complicated!

 Amino acid (AA) physicochemical properties are
important for AMP activity (charge, hydrophobicity,
etc.),

 AMPs are highly diverse, both in sequence and
killing mechanism,

 We still do not know exactly how physicochemical
properties relate to
AMP activity- knowledge needed
to guide AMP design.

Some proposed AMP attack mechanisms
Figure Source: Wimley (2011) J. of Mem. Bio. 239(1):27-34. 4

Prior AMP Classification Work
 Most work to date has focused on AMP recognition- taking query peptide sequences and assigning AMP

or non-AMP labels,

 Top techniques report accuracies in the high 80 to mid 90% range,

 Approaches often pair physicochemical properties with sliding window averages or machine learning
algorithms like artificial neural networks (ANN), support vector machines (SVM), etc.,

 A major issue in the field is that few groups make their code or complete data sets available. This makes it
difficult to perform reliable comparisons as a “gold standard” benchmark data set is not currently
available.

5

Prior AMP Classification Performance
Group Algorithm Performance

(Worst) -1MCC 1 (Best)

Cherkasov and Jankovic (2004) ANN 0.60

Thomas et al. (2009)
Random Forest† (RF)

SVM

0.86

0.82

Lata et al. (2010) SVM 0.84

Torrent et al. (2011) ANN 0.78

Fernandes et al. (2012)
Adaptive Neuro-Fuzzy Inference System

ANN

0.94

0.85

Xiao et al. (2013) Fuzzy K-Nearest Neighbor 0.84

Meher et al. (2017) SVM 0.84

Matthew’s Correlation Coefficient (MCC):

ܥܥܯ ൌ
ܶܲ	x	ܶܰ െ ሺܰܨ	x	ܲܨሻ

ܶܲ ܰܨ x ܶܰ ܲܨ x ܶܲ ܲܨ xሺܶܰ ሻܰܨ

MCC values range from -1 to 1, with 1 denoting perfect classification performance.

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

6† “Random Forest” is trademarked and licensed to Salford Systems (San Diego, CA)

Using Deep Learning for AMP Classification

7

Deep Neural Networks (DNN) in the News…

Go board image from Wikimedia Foundation 8

Deep Learning Packages
So many flavors to choose from…

9

Deep Neural Networks Have Multiple Layers

Source: Chollet and Allaire “Deep Learning with R” pp.9, 2018. 10

Our Model Architecture

11

Convolutional Layers

Figure from: towardsdatascience.com 12

Pooling Layer

Figure from: towardsdatascience.com 13

Long Short-Term Memory (LSTM)

…TCCGCGATCGTTCGGGTGGCCTTTAATATTATGTGCGCGTTAGCTGGTCACGCG

Direction of Reading

Recognize Pattern!

Ignore!

Figure: deeplearning.net
Original LSTM Paper: Hochreiter and Schmidhuber (1997) Long short-term memory.

14

Data Set Construction
 AMPs were taken from the Antimicrobial Peptide Database vr3 (aps.unmc.edu/AP).

Removed any <10 AA in length or sharing ≥90% sequence identity,

 Non-AMPs taken from UniProt using keyword filtering. Removed any <10 AA in length or
sharing ≥40% sequence identity,

 Randomly selected even number of AMPs and Non-AMPs for each partition: 712 Training,
354 Tuning, and 712 Testing.

15

Model Training and Testing Performance

16

A Head-to-Head AMP Server Comparison
Classification performance on our testing data set

(imtech.res.in/raghava/antibp2)

(camp.bicnirrh.res.in/predict)

(jci-bioinfo.cn/iAMP-2L)

(cabgrid.res.in:8080/amppred)

17

AMP Server Comparison ROC Curve

18

Embedding Vector of Amino Acids

19

A 2D t-SNE [1]
projection of the
128 dim. AA
embedding
vectors. K-means
(k=9) used to
select clusters

[1] Van der Maaten et al.
J. Machine Learn. Res., 2008

AMP Scanner vr.2 Website

20

Feel free to try our methods
out at:

www.ampscanner.com

Data sets are available to
download and contact
information if you would like
the code from me!

Building a Generative Model for AMP-like Sequences

21

4 Different Sampling Methods
 RANDOM- randomly select AAs and a total peptide length (L) from a population of training AMPs

(baseline method),

 GREEDY- Perform RANDOM, then select (L+1) AA’s to substitute with changes that improve AMP
probability (use prior deep learning model to judge),

 Metropolis Monte Carlo (MMC)- Perform GREEDY but, with a small probability, accepted worse AA
changes. Temperature (T) parameter decides how often we do this (higher T more changes
more diverse sequences),

 Simulated Annealing (SA-MMC)- Similar to MMC above but starts with a high T to start more diverse
and gradually lowers T over time to become greedier.

22

Distribution of All Generated Peptides

23

 Predicted non-AMP 0.5 Predicted AMP
The simulated
annealing (SA-MCC)
method performs
best- it generates
the most sequences
predicted to be
antimicrobial

Future Directions

 Now that we can generate and evaluate AMP sequences, can we use
adversarial learning to build improved AMP classifiers?

 More work needs to be done predicting how AMPs may work against
specific bacteria of medical interest. Can we do better at predicting
MIC, EC50 etc.?

24

Collaborators

25

Amarda Shehu, Ph.D.
George Mason University
Computer Science Dept.

Uday Kamath, Ph.D.
Digital Reasoning Systems, Inc.

Manpriya Dua, M.S.
George Mason University
Computer Science Dept.

Barney Bishop, Ph.D.
George Mason University
Chemistry Dept.

Special thanks to members of NIAID BCBB, the Shehu lab and Jianlin
Cheng (U. Missouri) for their helpful feedback and suggestions.

Thank you for listening!

Questions?

26

Extra Slides

27

Antimicrobial Resistance Rates

28

Source: US Center for Disease Control
https://www.cdc.gov/drugresistance/about.html

Learning Curves (10-Fold CV)

29

Performance Comparison on Other AMP Data Sets

30

Weights and Layers

…Layer 1 Layer 2

Layer m1
 x2
 …

n

y1
 y2
 …
yn

Inputs X Predictions Y

weights weights … weights
L1 L2 Lm

Often weights are randomly initialized and layer outputs are often
“activated” using functions to force numbers in a certain range. Typical

examples include: sigmoid, tanh, and rectifier linear unit (ReLU)
functions.

Weights and Layers

…Layer 1 Layer 2

Layer m1
 x2
 …

n

y1
 y2
 …
yn

Inputs X Predictions Y

weights weights … weights
L1 L2 Lm

Often weights are randomly initialized and layer outputs are often
“activated” using functions to force numbers in a certain range. Typical

examples include: sigmoid, tanh, and rectifier linear unit (ReLU)
functions.

Weights and Layers – Optimizing the Network

…Layer 1 Layer 2

Layer m1
 x2
 …

n

y1
 y2
 …
yn

Inputs X Predictions Y’

weights weights … weights
L1 L2 Lm

Apply scoring
function using

actual Y values
Optimizer

(adjust weights)

Start Round 2
of Training!

Optimizing via Backpropagation
The Secret Sauce of Deep Neural Networks (DNNs)

 How do DNNs learn so well? The key is they compute answers across layers in a forward pass and
then to use a backwards pass to optimize the weights. This way all layers are updated each round
(sometimes called an ‘epoch’) of training!

 How does this backward pass work? The chain rule (remember from calculus?) – where we can
calculate the derivative (the slope or rate of change) from two or more functions.

You might have seen this written as: ࢌ ∘ ࢍ ᇱ ൌ ᇱࢌ ∘ ࢍ ⋅ ′ࢍ

or maybe like this: ࢠࢊ
࢞ࢊ

ࢠࢊ =
࢟ࢊ
⋅ ࢟ࢊ
࢞ࢊ

or maybe like this: ࡲᇱ ࢞ ൌ ᇱࢌ ࢍ ࢞ ሻ࢞ሺ′ࢍ

The takeaway: we can calculate the derivative using
multiple functions at the same time!

Optimizing via Backpropagation
The Secret Sauce of Deep Neural Networks (DNNs)

 For our DNNs we are calculating the gradient (a vector of derivatives) to account for the change
across the network based on the forward pass results.
 Given a function ݂ ݔ where x’s are our training inputs- the gradient forms a vector: ݂ߘ ݔ ൌ

ሾ	ࣔࢌ
࢞ࣔ

ࢌࣔ ,
࢟ࣔ

[࢞,࢟] = [

Local Minimum

Global Minimum

Some Backpropagation Intuition

ࢌ ,࢞ ࢟ ൌ ࢞ 		࢟ → 	
ࢌࣔ

࢞ࣔ
 = 1 ,

ࢌࣔ

࢟ࣔ
 = 1Lets look at basic addition:

Lets look at multiplication: 										ࢌ ,࢞ ࢟ ൌ 			࢟࢞ → ࢌࣔ
࢞ࣔ

ࢌࣔ ࢟ =
࢟ࣔ

࢞ =

 If 4 = ࢞ and ࢌ 3− = ࢟ ,࢞ ࢟ ൌ െ											
ࢌࣔ
࢞ࣔ = −3

ࢌࣔ
࢟ࣔ = 4

What happens to each function if we change ࢞
… or change ࢟?

???

Some Backpropagation Intuition
Lets look at multiple functions:

݂ ,ݔ ,ݕ ݖ ൌ ݔ ݕ ݖ	

We can rewrite this as:		ݍ ൌ ݔ ݂	݀݊ܽ		ݕ ൌ ݖݍ

so 	ࣔࢌ
ࣔ

 = z ,
ࢌࣔ

ࢠࣔ
 = q … for (ݔ	+ ࢌࣔ :as we saw before (ݕ

࢞ࣔ
ࢌࣔ , 1 =

࢟ࣔ
 = 1

The chain rule says multiply: ࣔࢌ
࢞ࣔ

ࢌࣔ =
ࣔ
⋅ ࣔ
࢞ࣔ

Lets look at this with code and a visual representation!

Backpropagation Example
set some inputs
x = -2; y = 5; z = -4

perform the forward pass
q = x + y # q becomes 3
f = q * z # f becomes -12

perform the backward pass (backpropagation)
first backprop through f = q * z
dfdq = z # df/dq = z, so gradient on q becomes -4
dfdz = q # df/dz = q, so gradient on z becomes 3

now backprop through q = x + y
dfdx = 1.0 * dfdq # dq/dx = 1 chain rule!
dfdy = 1.0 * dfdq # dq/dy = 1Forward pass is green. Backward pass is red.

The big takeaway: The final gradient [ࣔࢌ
࢞ࣔ

ࢌࣔ ,
࢟ࣔ

ࢌࣔ ,
ࢠࣔ

] tells us how sensitive
our function ݂ is to the variables ݔ ݕ , , and ݖ.

