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Motivation
 Reports of antibiotic resistance have increased despite a 

slowdown in new antibiotics coming to market in recent 
decades,

 The U.S. Center for Disease Control reports over 2 million 
infections and 23,000 deaths each year due to antibiotic-
resistant bacteria and fungi in the U.S. [1],

 The WHO has put out numerous reports warning of the 
risks of resistant bacteria to hospitals around the world.
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Methicillin-resistant Staphylococcus aureus (left) 
Carbapenem-resistant Enterobacteriaceae (right)

[1] CDC: https://www.cdc.gov/drugresistance/about.html



Antimicrobial Peptides (AMPs)
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 One promising area for new antibiotic research has been natural AMPs- short peptides with innate 
antibacterial activity found across all phyla,

 To date, efforts to design and/or modify AMPs have had limited success in delivering new drugs to market.
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AMPs are Complicated!

 Amino acid (AA) physicochemical properties are 
important for AMP activity (charge, hydrophobicity, 
etc.),

 AMPs are highly diverse, both in sequence and 
killing mechanism,

 We still do not know exactly how physicochemical 
properties relate to
AMP activity- knowledge needed
to guide AMP design.

Some proposed AMP attack mechanisms
Figure Source: Wimley (2011) J. of Mem. Bio. 239(1):27-34. 4



Prior AMP Classification Work
 Most work to date has focused on AMP recognition- taking query peptide sequences and assigning AMP 

or non-AMP labels,

 Top techniques report accuracies in the high 80 to mid 90% range,

 Approaches often pair physicochemical properties with sliding window averages or machine learning 
algorithms like artificial neural networks (ANN), support vector machines (SVM), etc.,

 A major issue in the field is that few groups make their code or complete data sets available. This makes it 
difficult to perform reliable comparisons as a “gold standard” benchmark data set is not currently 
available.
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Prior AMP Classification Performance
Group Algorithm Performance

(Worst) -1MCC  1 (Best)

Cherkasov and Jankovic (2004) ANN 0.60

Thomas et al. (2009)
Random Forest† (RF)

----
SVM

0.86
-----
0.82

Lata et al. (2010) SVM 0.84

Torrent et al. (2011) ANN 0.78

Fernandes et al. (2012)
Adaptive Neuro-Fuzzy Inference System

-----
ANN

0.94
-----
0.85

Xiao et al. (2013) Fuzzy K-Nearest Neighbor 0.84

Meher et al. (2017) SVM 0.84

Matthew’s Correlation Coefficient (MCC):

ܥܥܯ ൌ
ܶܲ	x	ܶܰ െ ሺܰܨ	x	ܲܨሻ

ܶܲ  ܰܨ x ܶܰ  ܲܨ x ܶܲ  ܲܨ xሺܶܰ  ሻܰܨ

MCC values range from -1 to 1, with 1 denoting perfect classification performance.

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

6† “Random Forest” is trademarked and licensed to Salford Systems (San Diego, CA) 



Using Deep Learning for AMP Classification
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Deep Neural Networks (DNN) in the News…

Go board image from Wikimedia Foundation 8



Deep Learning Packages
So many flavors to choose from…
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Deep Neural Networks Have Multiple Layers

Source: Chollet and Allaire “Deep Learning with R” pp.9, 2018. 10



Our Model Architecture
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Convolutional Layers  

Figure from: towardsdatascience.com 12



Pooling Layer

Figure from: towardsdatascience.com 13



Long Short-Term Memory (LSTM)

…TCCGCGATCGTTCGGGTGGCCTTTAATATTATGTGCGCGTTAGCTGGTCACGCG

Direction of Reading

Recognize Pattern!

Ignore!

Figure: deeplearning.net
Original LSTM Paper: Hochreiter and Schmidhuber (1997) Long short-term memory. 
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Data Set Construction
 AMPs were taken from the Antimicrobial Peptide Database vr3 (aps.unmc.edu/AP). 

Removed any <10 AA in length or sharing ≥90% sequence identity,

 Non-AMPs taken from UniProt using keyword filtering. Removed any <10 AA in length or 
sharing ≥40% sequence identity,

 Randomly selected even number of AMPs and Non-AMPs for each partition: 712 Training, 
354 Tuning, and 712 Testing. 
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Model Training and Testing Performance
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A Head-to-Head AMP Server Comparison
Classification performance on our testing data set

(imtech.res.in/raghava/antibp2)

(camp.bicnirrh.res.in/predict)

(jci-bioinfo.cn/iAMP-2L)

(cabgrid.res.in:8080/amppred)
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AMP Server Comparison ROC Curve
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Embedding Vector of Amino Acids 
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A 2D t-SNE [1] 
projection of the 
128 dim. AA 
embedding 
vectors. K-means 
(k=9) used to 
select clusters

[1] Van der Maaten et al.
J. Machine Learn. Res., 2008



AMP Scanner vr.2 Website
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Feel free to try our methods 
out at:

www.ampscanner.com

Data sets are available to 
download and contact 
information if you would like 
the code from me!



Building a Generative Model for AMP-like Sequences
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4 Different Sampling Methods
 RANDOM- randomly select AAs and a total peptide length (L) from a population of training AMPs 

(baseline method),

 GREEDY- Perform RANDOM, then select (L+1) AA’s to substitute with changes that improve AMP 
probability (use prior deep learning model to judge),

 Metropolis Monte Carlo (MMC)- Perform GREEDY but, with a small probability, accepted worse AA 
changes. Temperature (T) parameter decides how often we do this (higher T more changes 
more diverse sequences),

 Simulated Annealing (SA-MMC)- Similar to MMC above but starts with a high T to start more diverse 
and gradually lowers T over time to become greedier.
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Distribution of All Generated Peptides
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 Predicted non-AMP   0.5   Predicted AMP 
The simulated 
annealing (SA-MCC) 
method performs 
best- it generates
the most sequences 
predicted to be 
antimicrobial



Future Directions

 Now that we can generate and evaluate AMP sequences, can we use 
adversarial learning to build improved AMP classifiers?

 More work needs to be done predicting how AMPs may work against 
specific bacteria of medical interest. Can we do better at predicting 
MIC, EC50 etc.?
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Collaborators
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Special thanks to members of NIAID BCBB, the Shehu lab and Jianlin
Cheng (U. Missouri) for their helpful feedback and suggestions.



Thank you for listening!

Questions?
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Extra Slides
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Antimicrobial Resistance Rates
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Source: US Center for Disease Control
https://www.cdc.gov/drugresistance/about.html



Learning Curves (10-Fold CV)
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Performance Comparison on Other AMP Data Sets
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Weights and Layers

…Layer 1              Layer 2                                      
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 x2
 … 
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y1
 y2
 … 
yn 

Inputs X Predictions Y

weights             weights                        … weights                                      
L1 L2 Lm

Often weights are randomly initialized and layer outputs are often 
“activated” using functions to force numbers in a certain range. Typical 

examples include: sigmoid, tanh, and rectifier linear unit (ReLU) 
functions.
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Weights and Layers – Optimizing the Network

…Layer 1             Layer 2                                      

Layer m1
 x2
 … 

n 

y1
 y2
 … 
yn 

Inputs X Predictions Y’

weights                weights                         … weights                                      
L1 L2 Lm

Apply scoring
function using

actual Y values
Optimizer

(adjust weights)

Start Round 2
of Training!



Optimizing via Backpropagation
The Secret Sauce of Deep Neural Networks (DNNs)

 How do DNNs learn so well? The key is they compute answers across layers in a forward pass and 
then to use a backwards pass to optimize the weights. This way all layers are updated each round 
(sometimes called an ‘epoch’) of training!

 How does this backward pass work? The chain rule (remember from calculus?) – where we can 
calculate the derivative (the slope or rate of change) from two or more functions.

You might have seen this written as:   ࢌ ∘ ࢍ ᇱ ൌ ᇱࢌ ∘ ࢍ ⋅ ′ࢍ

or maybe like this:  ࢠࢊ
࢞ࢊ

ࢠࢊ = 
࢟ࢊ
⋅ ࢟ࢊ
࢞ࢊ

or maybe like this:   ࡲᇱ ࢞ ൌ ᇱࢌ ࢍ ࢞ ሻ࢞ሺ′ࢍ

The takeaway: we can calculate the derivative using
multiple functions at the same time!



Optimizing via Backpropagation
The Secret Sauce of Deep Neural Networks (DNNs)

 For our DNNs we are calculating the gradient (a vector of derivatives) to account for the change 
across the network based on the forward pass results.
 Given a function ݂ ݔ where x’s are our training inputs- the gradient forms a vector: ݂ߘ ݔ ൌ

ሾ	ࣔࢌ
࢞ࣔ

ࢌࣔ  , 
࢟ࣔ

[࢞,࢟] = [ 

Local Minimum

Global Minimum



Some Backpropagation Intuition

ࢌ ,࢞ ࢟ ൌ ࢞  		࢟ → 	
ࢌࣔ

࢞ࣔ
 = 1 ,  

ࢌࣔ

࢟ࣔ
  = 1Lets look at basic addition: 

Lets look at multiplication: 										ࢌ ,࢞ ࢟ ൌ 			࢟࢞ → ࢌࣔ
࢞ࣔ

ࢌࣔ    ࢟ = 
࢟ࣔ

࢞ = 

       If 4 = ࢞ and ࢌ                  3− = ࢟ ,࢞ ࢟ ൌ െ											
ࢌࣔ
࢞ࣔ  = −3    

ࢌࣔ
࢟ࣔ  = 4

What happens to each function if we change ࢞
… or change ࢟?

???



Some Backpropagation Intuition
Lets look at multiple functions: 

݂ ,ݔ ,ݕ ݖ ൌ ݔ  ݕ ݖ	

We can rewrite this as:		ݍ ൌ ݔ  ݂	݀݊ܽ		ݕ ൌ ݖݍ

so 	ࣔࢌ
ࣔ

 = z ,  
ࢌࣔ

ࢠࣔ
  = q …  for (ݔ	+ ࢌࣔ  :as we saw before (ݕ

࢞ࣔ
ࢌࣔ  , 1 = 

࢟ࣔ
  = 1

The chain rule says multiply:  ࣔࢌ
࢞ࣔ

ࢌࣔ = 
ࣔ
⋅ ࣔ
࢞ࣔ

Lets look at this with code and a visual representation!



Backpropagation Example
# set some inputs
x = -2; y = 5; z = -4

# perform the forward pass
q = x + y # q becomes 3
f = q * z # f becomes -12

# perform the backward pass (backpropagation)
# first backprop through f = q * z
dfdq = z # df/dq = z, so gradient on q becomes -4
dfdz = q # df/dz = q, so gradient on z becomes 3

# now backprop through q = x + y
dfdx = 1.0 * dfdq # dq/dx = 1  chain rule!
dfdy = 1.0 * dfdq # dq/dy = 1Forward pass is green. Backward pass is red.

The big takeaway: The final gradient [ ࣔࢌ
࢞ࣔ

ࢌࣔ ,
࢟ࣔ

ࢌࣔ , 
ࢠࣔ

 ] tells us how sensitive
our function ݂ is to the variables ݔ ݕ , , and ݖ.


