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Motivation

= Reports of antibiotic resistance have /ncreased despite a
slowdownin new antibiotics coming to market in recent
decades, Methicillin-resistant Staphylococcus aureus (left)

Carbapenem-resistant Enterobacteriaceae (right)

= The U.S. Center for Disease Control reports over 2 million
infections and 23,000 deaths each year due to antibiotic-
resistant bacteria and fungi in the U.S. [1],

The evolving threat
of antimicrobial resistance

= The WHO has put out numerous reports warning of the

risks of resistant bacteria to hospitals around the world. Options for action

Executive Summary

[1] CDC: https://lwww.cdc.gov/drugresistance/about.html
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Antimicrobial Peptides (AMPs)

Beta Defensin 1 Magainin 2 Aurelin Cathelicidin LL-37
Homo sapiens Xenopus laevis Aurelia aurita Homo sapiens
PDB: 1)V PDB: 2MAG PDB: 2LG4 PDB: 2K60

= One promising area for new antibiotic research has been natural AMPs- short peptides with innate
antibacterial activity found across all phyla,

= To date, efforts to design and/or modify AMPs have had limited success in delivering new drugs to market.
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AMPs are Complicated!

= Amino acid (AA) physicochemical properties are

important for AMP activity (charge, hydrophobic b s
etc.), S FRREERERRRR
s / Molecular Shape

= AMPs are highly diverse, both in sequence and
killing mechanism,

Barrel-stave pore

= We still do not know exact/yhow physicochemic: Carpet models

properties relate to . ;/ \fing Raft

AMP a_lctlwty- knom./ledge needed P & .
to guide AMP design. @
D Interfacial Activity Models
etergent model
mlfﬁgg}a;'nfﬂm o Some proposed AMP attack mechanisms
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Figure Source: Wimley (2011) J. of Mem. Bio. 239(1):27-34.



Prior AMP Classification Work

Most work to date has focused on AMP recognition- taking query peptide sequences and assigning AMP
or non-AMPlabels,

Top techniques report accuracies in the high 80 to mid 90% range,

Approaches often pair physicochemical properties with sliding window averages or machine learning
algorithms like artificial neural networks (ANN), support vector machines (SVM), etc.,

A major issue in the field is that few groups make their code or complete data sets available. This makes it
difficult to perform reliable comparisons as a “gold standard” benchmark data set is not currently
available.
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Prior AMP Classification Performance

Rvaun Aldnvithm Performance
Matthew’s Correlation Coefficient (MCC): Y
o

(TP xTN) — (FN x FP)

MCC =
JTP + FN)x(TN + FP)x(TP + FP)x(TN + FN)

MCC values range from -1 to 1, with 1 denoting perfect classification performance.

TP =True Positive, TN = True Negative, FP = False Positive, FN = False Negative

Xiao et al. (2013) Fuzzy K-Nearest Neighbor 0.84
Meher et al. (2017) SVM 0.84
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T “Random Forest” is trademarked and licensed to Salford Systems (San Diego, CA)




Using Deep Learning for AMP Classification
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Deep Neural Networks (DNN) in the News...

Homa | MNews & Comment | Research | Careers & Joba | Cument Issue | Archive | Audio & Video |
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Artificial intelligence: Learning to play Go from
scratch

Satinder Singh, Andy Okun & Andrew Jackson
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Deep Leaming Packages
So many flavors to choose from...

D erss| o
" X

TensorFlow
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Deep Neural Networks Have Multiple Layers

Layer 1 Layer 2 Layer 3
representations representations representations

Layer 4
representations
(final output)

Original
input

W N0 R WNRE S
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Source: Chollet and Allaire “Deep Learning with R” pp.9, 2018.



Our Model Architecture

Sequence-to-Vector Conversion

Amino acids are each assigned a number 1-20, X is assigned
0 which is also used for padding shorter sequences

X, A, C, D E F, G H I, K L M N P, QR S T, V, W ¥
0 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20
Example Conversion:

FLPLIGKVLSGIL

<0,0,0,.. .,0,0,0,.5,10,13,10,8,6, 9,18,10,16,6,8,1b>
— <

Sequence vectors are padded with 0's until 200 in length

Output Y

“HH“W : A

Embedding Layer Convolutional Layer Max Pooling LSTM Layer Sigmoid Result
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Convolutional Layers

feature maps pooled
feature m

Convolved
Feature

Input

Convolutional
layer 1
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Pooling Layer

pooled Fully-connected 1

pooled  featuremaps  feature maps

feature maps

Single depth slice ply|x)

111124 O

max pool with 2x2 filters

50068 7 | 8 and stride 2 6 | 8

g

3| 4

3 | 2 [l ®

1 | 2 S
Outputs

Convolutional  pggling 2
layer 2
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Long Short-Term Memory (LSTM)

forget gate
self-recurrent
P sell-recirte
memory cell > h » Mmemory cell

input T output

|
Input gate output gate

Direction of Reading = I
Ignore!

..[TCCGELGATCGTTCGGGTGGCCTTTAATATTATGTGCGCGTTAGCTGGTCACGCG

Recognize Pattern!

National Institute of . .
mmlergy and Original LSTM Paper: Hochreiter and Schmidhuber (1997) Long short-term memory.
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Figure: deeplearning.net



Data Set Construction

= AMPs were taken from the Antimicrobial Peptide Database vr3 (aps.unmc.edu/AP).
Removed any <10 AA in length or sharing 290% sequence identity,

= Non-AMPs taken from UniProt using keyword filtering. Removed any <10 AA in length or
sharing 240% sequence identity,

= Randomly selected even number of AMPs and Non-AMPs for each partition: 712 Training,
354 Tuning, and 712 Testing.
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Model Training and Testing Performance

Training set Evaluationset SENS(%) SPEC(%) ACC(%) McCC auROC(%)
Train-Only Train 98.60 98.87 98.69 0.9706 99.87
Train-Only Tune 95.76 83.85 87.80 0.7582 96.67
Train+Tune Train+Tune 97.19 99.53 98.36 0.9674 99.75
Train+Tune Test 89.89 92.13 91.01 0.8204 96.48

All Data All Data 98.26 99.66 98.96 0.9793 99.94

All Data 10-fold CV 88.81 (#3.53) 94.21 (+2.68) 91.51 (+0.89)  0.8327 (+0.02)  96.58 (+0.66)
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A Head-to-Head AMP Server Comparison

Classification performance on our testing data set

Method SENS(%) SPEC(%) ACC(%) McC auROC(%)
AntiBP2 87.91 90.80 89.37 0.7876 89.36
(imtech.res.in/raghava/antibp2)

CAMP-ANN 82.98 85.09 84.04 0.6809 84.06
(camp.bicnirrh.res.in/predict)

CAMP-DA 87.08 80.76 83.92 0.6797 89.97
CAMP-RF 92.70 82.44 87.57 0.7554 93.63
CAMP-SVM 88.90 79.92 84.41 0.6910 90.63
iAMP-2L 83.99 85.86 84.90 0.6983 84.90

(jci-bioinfo.cn/iAMP-2L)

iAMPpred 89.33 87.22 88.27 0.7656 94.44
(cabgrid.res.in:8080/amppred)

Our DNN 89.89 92.13 91.01 0.8204 96.48

National Institute of
Allergy and
Infectious Diseases




AMP Server Comparison ROC Curve
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Embedding Vector of Amino Acids

300
A 2D t-SNE [1]
projection of the 200 - |
128 dim. AA L '
embeddin ]
; 100 > v F
vectors. K-means ~ E T
(k=9) used to c 0. = Q X A "
select clusters a N Y R G
—100 A H P K
—200 - C
[1] Van der Maaten et al.
J. Machine Learn. Res., 2008 —300 . . : . ;
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AMP Scanner vr.2 Website

Feel free to try our methods

out at:
www.ampscanner.com

Data sets are available to
download and contact
information if you would like
the code from me!
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Antimicrobial Peptide Scanner vr.2

M| Site Update: New "Feb2019" model now available using latest sequences from APD3. See the
"News" tab for more details!

Home About News Contact

Submit Sequences for Prediction

=or- Upload a FASTA File (max size 50MB)
Chease Flle  No file selected

Clear

Start Prediction! 4

Select Model: [ vr.2 Feb2018 B

© Enter between 1-50,000 protein sequences in valid FASTA format and press submit.




Building a Generative Model for AMP-like Sequences

Guiding Exploration of Antimicrobial Peptide Space
with a Deep Neural Network

Manpriya Dua Daniel Veltri Barney Bishop Amarda Shehu
Dept of Computer Science National Institute of Dept of Chemistry & Biochemistry Dept of Computer Science
George Mason University  Allergy & Infectious Diseases George Mason University George Mason University
Fairfax, VA, USA National Institutes of Health Manassas, VA, USA Fairfax, VA, USA
mdua@gmu.edu Rockville, MD, USA bbishop | @ gmu.edu amarda@ gmu.edu

dan.veltri@gmail.com

Abstract—Antibiotic resistance has become a serious concern, These peptides fall into a number of diverse sequence families

and many health organizations are sounding the alarm and the (e o cathelicidins. defensins, cecropins, etc.), are diverse in
need for new drug templates. Naturally-occurring antimicrobial

. A secondary and tertiary structure, and kill their targets through
peptides (AMPs) have long promised to serve as such templates, , hani h " b d DNA
as they have shown lower likelihood for bacteria to form various mechanisms, such as cell membrane damage,

resistance. This has motivated wet and drv laboratories to seek _interference, or signaling for adaptive immune responses [8].
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4 Different Sampling Methods

= RANDOM-randomly select AAs and a total peptide length (L) from a population of training AMPs
(baseline method),

=  GREEDY-Perform RANDOM, then select (L+1) AA’s to substitute with changes that improve AMP
probability (use prior deep learning model to judge),

= Metropolis Monte Carlo (MMC)-Perform GREEDYbut, with a small probability, accepted worse AA
changes. Temperature (T) parameter decides how often we do this (higher T = more changes >
more diverse sequences),

= Simulated Annealing (SA-MMC)- Similar to MMC above but starts with a high T to start more diverse
and gradually lowers T over time to become greedier.
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Distribution of A/ Generated Peptides

The simulated
annealing (SA-MCC) & Predicted non-AMP 0.5 Predicted AMP =
method performs

best- it generates ARRL
the most sequences
predicted to be
antimicrobial
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Future Directions

= Now that we can generate and evaluate AMP sequences, can we use
aaversarial learmingto build improved AMP classifiers?

= More work needs to be done predicting how AMPs may work against

specific bacteria of medical interest. Can we do better at predicting
MIC, EC50 etc.?

National Institute of
Allergy and
Infectious Diseases




Collaborators

Amarda Shehu, Ph.D. Uday Kamath, Ph.D. Barney Bishop, Ph.D. Manpriya Dua, M.S.
George Mason University Digital Reasoning Systems, Inc. George Mason University George Mason University
Computer Science Dept. Chemistry Dept. Computer Science Dept.

Special thanks to members of NIAID BCBB, the Shehu lab and Jianlin
Cheng (U. Missouri) for their helpful feedback and suggestions.
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Thank you for listening!

Questions?
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Extra Slides
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ANTIBIOTIC RESISTANCE ANTIBIOTIC
INDENTIFIED INTRODUCED

penicillin-R Staphyiococcus 1940 —

1943 penicillin

Antimicrobial Resistance Rates

—— 1950 tetracycline

1953  erythromycin

fine-R Shigella 1959 —
TR A —— 1960 methiciliin

methicillin-R Staphylococcus 1962 ——

penicillin-R preumococcus 1965

erythromycin-R Streptococcus 1968 — 1967  gentamicin

—— 1972 vancomycin

gentamicin-R Enterococcus 1979

"~ 1985 imipenem and

frazidime-R E teriaceae 1987 — ceftazidime
vancomycin-R Fnterococcus 1988 =
. levofloxacin-R pneumococcus 1996 ———— 1906 levofioxacin
Source: US Center for Disease Control imipenem R Enterobacteiocese 1998 —1
. ¥DR tuberculosts 2000 ———— 2000 linezolid
https://www.cdc.gov/drugresistance/about.html Wnezohd- Sophylococaus 2001 —]
vancomycin-R Staphylococeus 2002 | A ,
POR-Acinetobacter and Pseud 2004/5 — 2003  dapwninysia

National Institute of
Allergy and sefelcont iconts praord 2009 —"1— 2010 cefraroline
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ceftaroline-R Staphylococcus 2011 7




Learning Curves (10-Fold CV)

1.0

08lb . S S S S S S

Score

] I S S S — ]

o6l — S— — — — —

e—e Training score
e—e C(Cross-validation score

National Institute of 0.5 ] ] ] . | |
m Allergy and 0 500 1000 1500 2000 2500 3000 3500
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Performance Comparison on Other AMP Data Sets

Method Data Set No. AMPs (Overlap) No. Non-AMPs (Overlap) ACCi%) MCC

Our DNN 9295 D860

AntiBEP2 91.64 0.831
CAMP ANN Lata et al. 2010 999 (7T5%) 999 (0%) 81.03 0.624
CAMP DA 84.28 0.690
CAMP RF 87.09 0.752
CAMP SVM 26,69 0.739
1AMP-21 86,34 0.735
1AMPpred 92.84 0.858

Our DNN 90.93 0.827
AnuBP2 85.30 0.706
CAMP ANN Fermandes et al. 2012 115(62%) 116 (0%) 77.06 0.553
CAMP DA T7.06 0.572
CAMPRF T0.65 0.640
CAMP SVM T7.06 0.584
IAMP-21. 87.90 0.750

IAMPpred 84.00 0.691

Our DNN 9742 0.949

AntiBP2 89,10 0.781

CAMP ANN Xiaoetal. 2013 Train Set: 8T8 (TTY) Train Set: 23681 (0.3%) 80,00 0.610
CAMP DA T1.79 0.487

Test Set: 920 (62%) Test Set: 920 (0%)

CAMP RF 65.27 0.396

National Institute of CAMP SVM 67.77 | 0.420
Allergy and IAMP-2L 92.23 | 0.845
Infectious Diseases iAMPpred 72,00 0.500

137 sequences were removed from the original data set 1o remove dupli or peptides ining fr identical to known AMPs as in Velin (2015),




Weights and Layers

Layer 1 Layer 2 4
X, T Layer % Y+
X, .

e —- e ——

- weights weights ... weights "=

L, L, L,
Xn / Yn Q

Inputs X -

Predictions Y Z
|
Often weights are randomly initialized and layer outputs are often
T — “activated” using functions to force numbers in a certain range. Typical
mmlergy and examples include: sigmoid, tanh, and rectifier linear unit (ReLU)

Infectious Diseases fu nCtionS .



=6 2 6
— — — . l HE B B
Xn yn
Inputs X Predictions Y
Often s are often
National Institute of “aCtivate ange' Typlcal
mlAlflerg:y andD‘ exampl —{I:I N —LE o nit (ReLU)




Weights and Layers - Optimizing the Network

Start Round 2
of Training! | Layer 1 Layer
X 1L 7
X2 .
— — —
C e a weights é— weights = \veights
L, L, L.,

Xn

Inputs X — Predlctlons Y’

Apply scoring

NIH) Y Optimizer function using 2
Pk (adjust weights) actual Y values
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Optimizing via Backpropagation
The Secret Sauce of Deep Neural Networks (DNNs)

= How do DNNs learn so well? The key is they compute answers across layers in a forward pass an
then to use a backwards passto optimize the weights. This way all layers are updated each roun
(sometimes called an ‘epoch’) of training!

= How does this backward pass work? The chain rule (remember from calculus?) - where we can
calculate the derivative (the slope or rate of change) from two or morefunctions.

You might have seen thiswrittenas: (fog) =(f'og9) g’
or maybe like this: 2% =22.22 ormaybe like this: F'(x) = f'(g(x))g’(x)

.. Thetakeaway: we can calculate the derivative using
m)m'ergvand multiple functions at the same time!
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Optimizing via Backpropagation
The Secret Sauce of Deep Neural Networks (DNNs)

= Forour DNNs we are calculating the gradient (a vector of derivatives) to account for the change
across the network based on the forward pass results.

= Given a function f (x) where x’s are our training inputs- the gradient forms a vector: V'f (x) =

0 i}
[a—i, é =Ly«

Local Minimum

Global Minimum

v
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Some Backpropagation Intuition

of

Lets look at multiplication: fx,y)=xy - ax
d

Ifx=4andy=-3 flxy) =-12 a—i

= -3

Lets look at basic addition:  f(x,y) =x+y -

77?7

What happens to each function if we change x

National Institute of
mmlergyand - OI’ Change yf)

Infectious Diseases




Some Backpropagation Intuition

Lets look at multiple functions:

fxx,y,z) =(x+y)z

We canrewrite thisas: g =x+y and f = qz

af of of of
_—= — = + . T - — =
SO o0 z, . q ... for(x+ y)as we saw before: o 1, 3y 1
| ioly: & = 2
The chain rule says multiply: ox _ 3q 2%

National Institute of
M)ffiﬁéﬁi"mseases Lets look at this with code and a visual representation!




Backpropagation Example

# set some inputs

X = .2: y = 5_‘_2 =.4
% =2
] # perform the forward pass
q 3 q=Xx+y #gbecomes 3
f=q*z#fbecomes-12
¥ 3
— f -12

- | # perform the backward pass (backpropagation)
# first backprop throughf=qg* z

7z -4 dfdq = z # df/dg = 7, so gradient on g becomes -4
dfdz = q # df/dz = q, so gradient on z becomes 3

# now backprop through g=x+vy

: : dfdx = 1.0 * dfdq # dg/dx = 1 chain rule!
Forward pass is green. Backward pass is red. dfdy = 1.0 * dfdg " dg /dy = 1

: : : af of @ "
The big takeaway: The final gradient [ a—£ : a—£ : a—’zc ] tells us how sensitiv
m)Naﬁona. R our function f is to the variables x , y , and z.
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